PRODUCT DATA SHEET NC-SMQ92J

Solder Paste

Introduction

NC-SMQ92J is a halogen-free, air reflow, no-clean solder paste formulated to leave a benign, probe-testable residue. The residue is easily penetrated and will not clog multi-point probes. This product has other qualities such as consistent fine-pitch paste deposition, unsurpassed stencil life and tack time, and excellent wetting. NC-SMQ92J will perform well on high-speed surface mount lines utilizing fast print speeds and rapid chip placement. NC-SMQ92J meets or surpasses all ANSI/J-STD-004, -005 specifications, and Bellcore test criteria.

Features

- Excellent wetting reflow in air
- Probe-testable residue
- Extended open time
- · Consistent fine-pitch printing
- · Strong initial tack strength and long-term stability
- High humidity resistance
- Halogen-free

Alloys

Indium Corporation manufactures low-oxide spherical powder composed of SnPb and SnPbAg in the industry standard Type 3 mesh size. Other non-standard mesh sizes are available upon request. The weight ratio of the flux/vehicle to the solder powder is referred to as the metal load and is typically in the range of 85-92% for standard alloy compositions.

Bellcore and J-STD Tests and Results

Test	Result	Test	Result		
J-STD-004 (IPC-TM-650)		J-STD-005 (IPC-TM-650)			
Flux Type Classification	ROL0	Typical Solder Paste Viscosity	2,000 poise		
Flux Induced Corrosion (Copper Mirror)	Pass	(Sn63, 90.25%, Type 3) Malcom (10rpm)			
Presence of Halide Fluoride Spot Test Pass		Typical Thixotropic Index; SSF (ICA Test)	-0.75		
Elemental Analysis (Br, Cl, F)	0%	Slump Test	Pass		
Post Reflow Flux Residue	45%	Solder Ball Test	Pass		
(ICA Test)		Typical Tackiness	38g		
Corrosion	Pass	Wetting Test	Pass		
SIR	Pass	BELLCORE GR-78			
Acid Value	113	SIR	Pass		
All information is for reference only. Not to be used as incoming product specifications.		Electromigration	Pass		

Standard Product Specifications

Alloy		Metal Load (% by weight)			
Name	Composition	T3 Printing	T3 Dispense	T4 Printing	T4 Dispense
Sn63	Sn63/Pb37		84-86%	89-90%	83-86%
Sn62	Sn62/Pb36/Ag2	89–91%			
Indalloy® 100	Sn62.6/Pb37/Ag0.4	00 0170			

Compatible Products

• Rework Flux: PoP Flux 8.9HF-LV, TACFlux®020

• Cored Wire: CW-807

• Wave Flux: WF-9945, WF-9955, FP-500, NC-771

Note: Other products may be applicable. Please consult Technical Support Engineers.

Storage and Handling Procedures

Refrigerated storage will prolong the shelf life of solder paste. Solder paste packaged in cartridges should be stored tip down.

Storage Conditions (unopened containers)	Shelf Life	
<10°C	6 months	

Solder paste should be allowed to reach ambient working temperature prior to use. Generally, paste should be removed from refrigeration at least 2 hours before use. Actual time to reach thermal equilibrium will vary with container size. Paste temperature should be verified before use. Jars and cartridges should be labeled with date and time of opening.

Packaging

Standard packaging for stencil printing applications includes 4oz jars and 6 or 12oz cartridges. Packaging for enclosed print head systems is also readily available. For dispensing applications, 10 and 30cc syringes are standard. Other packaging options are available on request.

PRODUCT DATA SHEET

NC-SMQ92J Solder Paste

Printing

Stencil Design:

Electroformed and laser cut/electropolished stencils produce the best printing characteristics among stencil types. Stencil aperture design is a crucial step in optimizing the print process. The following are a few general recommendations:

- Discrete components—A 10–20% reduction of stencil aperture has significantly reduced or eliminated the occurrence of mid-chip solder beads. The "home plate" design is a common method for achieving this reduction.
- Fine-pitch components—A surface area reduction is recommended for apertures of 20mil pitch and finer. This reduction will help minimize solder balling and bridging that can lead to electrical shorts. The amount of reduction necessary is process-dependent (5–15% is common).
- For adequate release of solder paste from stencil apertures, a minimum aspect ratio of 1:5 is suggested. The aspect ratio is defined as the width of the aperture divided by the thickness of the stencil.

Printer Operation				
Solder Paste Bead Size	~20-25mm in diameter			
Print Speed	25-100mm/second			
Squeegee Pressure	0.018–0.027Kg/mm of blade length			
Underside Stencil Wipe	Start at once per every 10–25 prints and decrease frequency until optimum value is reached			
Squeegee Type/Angle	Metal with appropriate length/~45-60 degrees			
Separation Speed	5–20mm/second or per equipment manufacturer's specifications			
Solder Paste Stencil Life	>12 hours (at 30–60% RH and 22–28°C)			

Cleaning

NC-SMQ92J is designed for no-clean applications; however, the flux can be removed, if necessary, by using a commercially available flux residue remover.

Stencil Cleaning is best performed using isopropyl alcohol (IPA) as a solvent. Most commercially available non-water-based stencil cleaners work well.

Recommended Profile: 250 SAC MP = 220°C Linear Shoulder Sal/Pb Linear Profile Sal/Pb Linear Profile Sal/Pb Linear Profile

The stated profile applies to Sn63 and Sn62 alloys. This can be used as a general guideline in establishing a reflow profile when using **NC-SM092J Solder Paste**. Deviations from these recommendations are acceptable, and may be necessary, based on specific process requirements, including board size, thickness, and density. Start with the linear profile, then move to the optional soak profile, if needed. The flat soak portion of the linear profile (linear shoulder) may also be eliminated.

Reflow Profile Details	Param Sn	Comments		
Ramp Profile (Average Ambient to Peak)— Not the Same as Maximum Rising Slope	0.5-1.0°C/second Recommended	0.5–2.5°C/second Acceptable	To minimize solder balling, beading, hot slump	
Soak Zone Profile (Optional)	30-90 seconds Recommended	30–120 seconds Acceptable	May minimize BGA/CSP voiding	
	140-150°C/Recommended	130-170°C/Acceptable		
Time Above Liquidus (TAL)	45-60 seconds Recommended	30–100 seconds Acceptable	Needed for good wetting/reliable solder joint As measured with thermocouple	
Peak Temperature	210-230°C/Recommended	195-233°C/Acceptable		
Cooling Ramp Rate	2-6°C/second Recommended	0.5-6.0°C/second Acceptable	Rapid cooling promotes fine-grain structure	
Reflow Atmosphere	Air or N ₂		N ₂ typically preferred for small components	

All parameters are for reference only.

Modifications may be required to fit process and design.

This product data sheet is provided for general information only. It is not intended, and shall not be construed, to warrant or guarantee the performance of the products described which are sold subject exclusively to written warranties and limitations thereon included in product packaging and invoices. All Indium Corporation's products and solutions are designed to be commercially available unless specifically stated otherwise.

All of Indium Corporation's solder paste and preform manufacturing facilities are IATF 16949:2016 certified. Indium Corporation is an ISO 9001:2015 registered company.

